c= 5 meters
Step-by-step explanation
we have a rigth triangle, then
Step 1
Let
![\begin{gathered} \text{angle}=45\text{ \degree} \\ \text{hypotenuse}=5\sqrt[]{2} \\ \text{adjacent side= c} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ktr76dt2trt8i1bo3zxsns68mlunuspqxp.png)
hence, we need a function that relates: angle, adjacent side and hypotenuse
![\cos \text{ }\emptyset\text{= }\frac{adjacent\text{ side}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/hqy0f9q57ywzf5roxc0nbmdac4h9co27os.png)
now, replace
![\begin{gathered} \cos \text{ }\emptyset\text{= }\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos \text{ 45= }\frac{c}{5\sqrt[]{2}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2jzem87kdsn3d4vje7tovxiyelk7onyu2c.png)
Step 2
solve the equation
![\begin{gathered} \cos \text{ 45= }\frac{c}{5\sqrt[]{2}} \\ \frac{\sqrt[]{2}}{2}=\frac{c}{5\sqrt[]{2}} \\ \text{Multiply both sides by 5}\sqrt[]{2} \\ \frac{\sqrt[]{2}}{2}\cdot5\sqrt[]{2}=\frac{c}{5\sqrt[]{2}}\cdot5\sqrt[]{2} \\ (10)/(2)=c \\ 5=c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/42vgu0r33mckg4mepyxp3e66m5dwjbw4r0.png)
therefore, teh answer is
c=5 meters
I hope this helps you