173k views
1 vote
Let x(t) = t ^ 3 - 4t ^ 2 + t and y(t) = t ^ 2 - 3t + 3

Let x(t) = t ^ 3 - 4t ^ 2 + t and y(t) = t ^ 2 - 3t + 3-example-1
User VinceFR
by
7.7k points

1 Answer

5 votes

Given:


\begin{gathered} x\left(t\right)=t^3-4t^2+t \\ y\left(t\right)=t^2-3t+3 \end{gathered}

Required:

Find


x(3),y(3),(dx)/(dt),\text{ }(dy)/(dt),(dy)/(dx)\text{ and speed at t=3}

Step-by-step explanation:

The given functions are


\begin{gathered} x\left(t\right)=t^3-4t^2+t \\ y\left(t\right)=t^2-3t+3 \end{gathered}

Substitute t=3 in x(t).


\begin{gathered} x\left(3\right)=(3)^3-4(3)^2+(3) \\ =27-36+3 \\ =-6 \end{gathered}

Substitute t=3 in y(t).


\begin{gathered} y\left(3\right)=(3)^2-3(3)+3 \\ =9-9+3 \\ =3 \end{gathered}

Differentiate the function x(t) with respect to t.


(dx)/(dt)=3t^2-8t+1

Substitute t = 3 in


(dx)/(dt)
\begin{gathered} (dx)/(dt)|_(t=3)=3(3)^2-8(3)+1 \\ =27-24+1 \\ =4 \end{gathered}

Differentiate the function y(t) with respect to t.


\begin{gathered} (dy)/(dt)=2t-3 \\ (dy)/(dt)|_(t=3)=2(3)-3 \\ =6-3 \\ =3 \end{gathered}
\begin{gathered} (dy)/(dx)=((dy)/(dt))/((dy)/(dx)) \\ (dy)/(dx)=(2t-3)/(3t^2-8t+1) \\ (dy)/(dx)|_(t=3)=(2(3)-3)/(3(3)^2-8(3)+1) \\ =(3)/(4) \end{gathered}

The speed at 3 is 3/4.

F

User Cstrutton
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories