To find which of these lines are perpendicular, find the slope of each line.
To do it, use 2 points on the line and the following formula:
![m=(y2-y1)/(x2-x1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wt3vklmulg2853jxzclws9uvfaplhmpgv7.png)
AB:
![m=(5-2)/(4-(-5))=(3)/(9)=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/tbdp3mk219fwt9e4zpmryw6g5z1wwiuivu.png)
BC:
![m=(-1-5)/(5-4)=-6](https://img.qammunity.org/2023/formulas/mathematics/college/za1eovod5jj3nef7ytcvdlx8egg2dm93e1.png)
CD:
![m=(-1-(-4))/(5-(-3))=(3)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/hbk3i3rut97yynedmwpjkf2tl7jldvviqw.png)
DA:
![m=(-4-2)/(-3-(-5))=-(6)/(2)=-3](https://img.qammunity.org/2023/formulas/mathematics/college/pc1guvnywplc7pupxgry4bw7dn0ey67nnt.png)
For 2 lines to be perpendicular, the product of their slopes must be -1. According to this the only pair that meets this condition is AB, DA.
![m=(1)/(3)\cdot-3=-1](https://img.qammunity.org/2023/formulas/mathematics/college/perrnydlruqnc4vx0rkgnsdvb3muh7124k.png)
Segment AB and DA are perpendicular.