Test each of the options to get those that are not a trigonometry identites
For option A
![\begin{gathered} \text{tanxcosxcscx}=1 \\ \tan x=(\sin x)/(\cos x) \\ \csc x=(1)/(\sin x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hap9kx9vnkau14zx69jft7r13xscl5fhw5.png)
![\tan x\cos x\csc x=(\sin x)/(\cos x)*\cos x*(1)/(\sin x)=(\sin x*\cos x)/(\cos x*\sin x)=1](https://img.qammunity.org/2023/formulas/mathematics/college/y0531hefyufg20c7cm4ymxyzf2ywh8dlmc.png)
OPTION A IS A TRIGONOMETRY IDENTITY
For option B
![\begin{gathered} 1-\tan x\tan y=(\cos (x+y))/(\cos x\cos y) \\ \tan x=(\sin x)/(\cos x) \\ \tan y=(\sin y)/(\cos y) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/53k6ld2n0eq4q0j56w5cgky7oeceuytk5o.png)
![\begin{gathered} 1-\tan x\tan y=1-(\sin x)/(\cos x)*(\sin y)/(\cos y) \\ =1-(\sin x\sin y)/(\cos x\cos y) \\ =(\cos x\cos y-\sin x\sin y)/(\cos x\cos y) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dskbzxj0j0cyayvs4xnimzwskfvd6ct960.png)
Therefore,
![(\cos x\cos y-\sin x\sin y)/(\cos x\cos y)=(\cos (x+y))/(\cos x\cos y)](https://img.qammunity.org/2023/formulas/mathematics/college/ol024ip5rl6di2laq4hhlbi5mupaeqthgw.png)
Multiply through by the common base
![\cos x\cos y-\sin x\sin y=\cos (x+y)](https://img.qammunity.org/2023/formulas/mathematics/college/57kr3j6e6vkrv6ywnhkg4usaycbvhfdb19.png)
The above expression is a trigonometry identity, so it is true.
OPTION B IS A TRIGONOMETRY IDENTITY
Checking for option C
![\begin{gathered} (\sec x-\cos x)/(\sec x)=\sin ^2x \\ (\sec x)/(\sec x)-(\cos x)/(\sec x)=\sin ^2x \\ 1-\cos x((1)/(\sec x))=\sin ^2x \\ \text{note} \\ (1)/(\sec x)=\cos x,\text{then} \\ 1-\cos x(\cos x)=\sin ^2x \\ 1-\cos ^2x=\sin ^2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dq9vaisbxne8m27jhr4jnlvpbwg13a4vwb.png)
![1=\sin ^2x+\cos ^2x](https://img.qammunity.org/2023/formulas/mathematics/college/j1ix1qs3u57v1ysxvj3evskq090qll9jzd.png)
The above is a triogonometry identity
OPTION C IS A TRIGONOMETRY IDENTITY
Checking for option D
![4\cos x\sin x=2\cos x+1-2\sin x](https://img.qammunity.org/2023/formulas/mathematics/college/nk7fn14m405sssjrhctbgzm2ovplbk0va8.png)
The above is not a trigonometry identity
OPTION D IS NOT A TRIGONOMETRY IDENTITY
Hence, the option that is not a trigonometry identity is OPTION D