220k views
1 vote
Can you please help me find the limit and identify any vertical asymptotes? Thanks

Can you please help me find the limit and identify any vertical asymptotes? Thanks-example-1

1 Answer

0 votes

Given: The limit below


\lim_(x\to7^-)((1)/(x-7))

To Determine: The limit and the vertical asymptotes

Solution


\begin{gathered} \lim_(x\to7^-)((1)/(x-7)) \\ \mathrm{For}\:x\:\mathrm{approaching}\:7\:\mathrm{from\:the\:left},\:x<7\quad \Rightarrow \quad \:x-7<0 \\ The\:denominator\:is\:a\:negative\:quantity\:approaching\:0\:from\:the\:left \\ Hence \\ \operatorname{\lim}_(x\to7^-)((1)/(x-7))=-\infty \end{gathered}

For the vertical asymptote


\begin{gathered} Vertical-asymptote \\ For\:rational\:functions,\:the\:vertical\:asymptotes\:are\:the\:undefined\:points \\ also\:known\:as\:the\:zeros\:of\:the\:denominator,\:of\:the\:simplified\:function. \end{gathered}

The denominator of the rational function given is


\begin{gathered} denominator:x-7 \\ x-7=0 \\ x=7 \end{gathered}

Hence:

limit = - ∞

Vertical asymptote: x = 7

User Nikolina
by
4.2k points