Notice that:
![1^2-1=0.](https://img.qammunity.org/2023/formulas/mathematics/college/l680wn2eqo7wzd9niwfeehzomtgr2h3qz5.png)
Therefore:
![f(x)=(x-1)/(x^2-1)](https://img.qammunity.org/2023/formulas/mathematics/college/mdnek262e7blfmzipgotgmdh9kjc4uxr2e.png)
is undefined at x=1.
Now, recall that the natural logarithm is defined over the positive numbers, therefore:
![x^2-1>0](https://img.qammunity.org/2023/formulas/mathematics/college/duntwzusv01sv2wil25jvsadqqry9wxuxy.png)
Then:
![x>1\text{ or }x<-1.](https://img.qammunity.org/2023/formulas/mathematics/college/6erb6qxhz2urlfpwvujq2adcsbwphe3oje.png)
Therefore the function
![f(x)=ln(x^2-1)](https://img.qammunity.org/2023/formulas/mathematics/college/cp1o8y9ou7z0m73ul522peqsbniyo5gewp.png)
is not well defined over the interval (0,2).
Finally, notice that:
![p(x)=x^2+1,](https://img.qammunity.org/2023/formulas/mathematics/college/d22yif4019xqbxzo36iq3k1jfllf41llau.png)
has no real zeros, therefore the function:
![f(x)=(x+1)/(x^2+1)](https://img.qammunity.org/2023/formulas/mathematics/college/7djk175r9hqbgwys5p7ewkbnptyn9lxy1l.png)
is well defined over all real numbers, also is continuous over all real numbers, particularly over the interval (0,2).
Answer: First option.
II only.