ANSWER:
92.09 kg.
Explanation:
Mass board (M) = 65 kg
Length board (L) = 6.2 m
Left edge wooden (l) = -2 m
Tension (T) = 800 N
There are a total of 3 forces acting on the board, they are the following:
![\begin{gathered} W_(board)=M\cdot g=65\cdot9.8=637\text{ N} \\ \\ W_(wooden)=mg=m(9.8)=9.8m\text{ N} \\ \\ T_y=T\cdot\sin\theta=800\cdot\sin45\degree=565.7\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w7q12x6mxlb9lik3zwv9igxsds4brun3ul.png)
Since the board is balanced, the net torque acting up will be equal to the net torque acting down.
So we can establish the following balance:
![\begin{gathered} \tau_(tension)=\tau_(board)+\tau_(wooden) \\ \\ T_y\cdot d=W_(board)\cdot(L)/(2)+W_(wooden)\cdot l \\ \\ \text{ We replacing:} \\ \\ 565.7\cdot0.3=637\cdot(6.2)/(2)+9.8m\cdot-2 \\ \\ 169.71=1974.7-19.6m \\ \\ m=(1974.7-169.71)/(19.6) \\ \\ m=92.09\text{ kg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w0pnl1pqndlww247kwrxjpq2oyssybs7t5.png)
The mass of the wooden crate is 92.09 kg.