87.1k views
0 votes
F(x) = (8x - 4) ^ 3 * (4x ^ 2 + 7) ^ 4 find f^ prime (x) using logarithmic differentiation

F(x) = (8x - 4) ^ 3 * (4x ^ 2 + 7) ^ 4 find f^ prime (x) using logarithmic differentiation-example-1
User Steffan
by
3.5k points

1 Answer

5 votes

To solve this question we going to need to formulas:


\begin{gathered} ln(x\cdot y)=ln(x)+ln(y)\text{ \lparen1\rparen} \\ \\ ln(x^y)=yln(x)\text{ }\left(2\right) \end{gathered}

Now to make a logarithmic differentiation we apply logarithm to the initial equation


\begin{gathered} f\mleft(x\mright)=(8x-4)^3*(4x^2+7)^4 \\ \\ ln(f(x))=ln((8x-4)^3(4x^2+7)^4) \end{gathered}

Now we apply the first two formulas


\begin{gathered} ln(f(x))=ln((8x-4)^3)+ln((4x^2+7)^4) \\ \\ ln(f(x))=3\cdot ln((8x-4))+4\cdot ln((4x^2+7)) \end{gathered}

Now we make an implicit derivate


(f^(\prime)(x))/(f\lparen x))=(6)/(2x-1)+(32x)/(4x^2+7)

Simplify


\frac{f^(\prime)(x)}{f\operatorname{\lparen}x)}=(88x^2-32x+42)/(\left(2x-1\right)\left(4x^2+7\right))

Now we are almost done but we have that f(x), but we know what is that from the beginning, f(x) = (8x - 4) ^ 3 * (4x ^ 2 + 7) ^ 4

Replacing


f^(\prime)(x)=((8x-4)^3*(4x^2+7)^4)\cdot(88x^(2)-32x+42)/((2x-1)(4x^(2)+7))

Answer:

Simplify


f^(\prime)(x)=64\left(2x-1\right)^2\left(4x^2+7\right)^3\left(88x^2-32x+42\right)

User Sethy Proem
by
3.8k points