The nth term of an arithmetic sequence is given by the formula,
![a_n=a+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/t99kk5roieipg56xa37yseewl9ybc4zh6i.png)
Here, 'a' denotes the first term, and 'd' denotes the common difference of the arithmetic sequence.
According to the given information,
![\begin{gathered} a_1=a=5 \\ d=3 \\ n=22 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iw168y3c8du7nhilctlr9cmpqqvox2nuo4.png)
Substitute the values in the formula to obtain the 22nd term,
![\begin{gathered} a_(22)=5+(22-1)\cdot3 \\ a_(22)=5+(21)\cdot3 \\ a_(22)=5+63 \\ a_(22)=68 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pj0y75wpx1faaf50mf10yim2zap8v3h2o4.png)
Thus, the 22nd term of the arithmetic sequ