121k views
3 votes
Use the Binomial Theorem to expand (c – 11)4. Question 4 options:c4 – 44c3 + 726c2 – 5324c + 1464111c4 + 44c3 + 726c2 + 5324c + 14641cc4 + 44c3 + 726c2 + 5324c + 14641c4 – 44c3 + 726c2 – 5324c + 14641

Use the Binomial Theorem to expand (c – 11)4. Question 4 options:c4 – 44c3 + 726c-example-1
User Sungguk
by
3.5k points

1 Answer

4 votes

Answer:


c^4-44c^3+726c^2-5324c+14641

Step-by-step explanation:

The Binomial theorem is given by the formula;


(x+y)^n=_{}\sum ^n_(k\mathop=0)nC_kx^(n-k)y^k

Given the below;


(c-11)^4

We'll go ahead and use the Binomial theorem formula above to expand where;


\begin{gathered} x=c \\ y=-11 \\ n=4 \end{gathered}

So we'll have;


\begin{gathered} (c-11)^4=_4C_0c^(4-0)(-11)^0+_4C_1c^(4-1)(-11)^1+_4C_2c^(4-2)(-11)^2+_4C_3c^(4-3)(-11)^3+_4C_4c^(4-4)(-11)^4 \\ =c^4-44c^3+726c^2-5324c+14641 \end{gathered}

User Rachelvsamuel
by
3.4k points