Step-by-step explanation
We must find the complex cubic roots of the complex number:

We identify the modulus r and angle θ as:
• modulus r = 64,
,
• angle θ = 219°.
The k = 0, 1, ..., n - 1 roots of a complex number are given by:
![w_k=\sqrt[n]{r}\cdot\lbrack\cos((\theta+k\cdot360\degree)/(n))+i\cdot\sin((\theta+k\cdot360\degree)/(n))]](https://img.qammunity.org/2023/formulas/mathematics/college/bz1cgu03wqr6roc1edqndgsxgx9gedssrv.png)
In this case three roots, we have k = 0, 1, 2. Using the data and formula from above, we have:
![\begin{gathered} w_0=\sqrt[3]{64}\cdot\lbrack\cos((219\degree+0\cdot360\degree)/(3))+i\cdot\sin((219\degree+0\cdot360\degree)/(3))]=4\cdot\lbrack\cos(73\degree)+i\cdot\sin(73\degree)], \\ w_1=\sqrt[3]{64}\cdot\lbrack\cos((219\degree+1\cdot360\degree)/(3))+i\cdot\sin((219\degree+1\cdot360\degree)/(3))]=4\cdot\lbrack\cos(193\degree)+i\cdot\sin(193\degree)], \\ w_2=\sqrt[3]{64}\cdot\lbrack\cos((219\degree+2\cdot360\degree)/(3))+i\cdot\sin((219\degree+2\cdot360\degree)/(3))]=4\cdot\lbrack\cos(313\degree)+i\cdot\sin(313\degree)]. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ii1etr0j4vwqp7vygij0vw94kfo49n8e7.png)
Answer
There are three cubic roots:
![\begin{gathered} w_0=4\cdot\lbrack\cos(73\degree)+i\cdot\sin(73\degree)] \\ w_1=4\cdot\lbrack\cos(193\degree)+i\cdot\sin(193\degree)] \\ w_2=4\cdot\lbrack\cos(313\degree)+i\cdot\sin(313\degree)] \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/16h8yktehg85zee08f6oj99x0eu66yaw4h.png)