Given: Sets B and C are subsets of the universal set U.
These sets are defined as follows-
![\begin{gathered} U=\left\{1,3,5,6,7\right\} \\ B=\left\{1,3,6\right\} \\ C=\left\{1,3,5\right\} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/peeipdko9yid771n62ch3ccz1vzoglfp34.png)
Required: To determine the following sets-
![\begin{gathered} B^(\prime)\cup C^(\prime) \\ B^(\prime)\cap C \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d65obv4qrvwtzt1feb4xo4cop1fb0wh2ld.png)
Explanation: The complement of a set A with the universal set U is defined as-
![A^(\prime)=U-A](https://img.qammunity.org/2023/formulas/mathematics/college/3825qg0fe9yx9t6rdbzsk8aaz9sddnydhk.png)
Hence, the complement of set B is-
![\begin{gathered} B^(\prime)=U-B \\ =\left\{1,3,5,6,7\right\}-\left\{1,3,6\right\} \\ =\lbrace5,7\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wkkint8izkkbbzgsk27byx6q20bdjq38wf.png)
Similarly, the complement of set C is-
![\begin{gathered} C^(\prime)=\left\{1,3,5,6,7\right\}-\left\{1,3,5\right\} \\ =\lbrace6,7\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ns8m0wfxz6rixflwddiadg0c6ohfoat4un.png)
Now,
![\begin{gathered} B^(\prime)\cup C^(\prime)=\lbrace5,7\rbrace\cup\lbrace6,7\rbrace \\ =\lbrace5,6,7\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qc21zwojd09zyj3bbjlf24xzxuysa4m2of.png)
Similarly-
![\begin{gathered} B^(\prime)\cap C=\lbrace5,7\rbrace\cap\left\{1,3,5\right\} \\ =\lbrace5\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fnnzyp6ju5jcviat6sckst8pmfq47b16rw.png)
Final Answer: (a)-
![B^(\prime)\cup C^(\prime)=\lbrace5,6,7\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/sagu6256vr3wz3v3gf9mm7aniwgh0ou66l.png)
(b)-
![B^(\prime)\cap C=\lbrace5\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/w0iwf7hhpyh72yx4uynshqog2yk5x1ndb7.png)