Given:
A fair die is rolled.
To find:
The probability of rolling a 3 or a 4.
Step-by-step explanation:
The total sample space is,
![\begin{gathered} S=\lbrace1,2,3,4,5,6\rbrace \\ n(S)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kk4s5qv30123jzqy4tzxmn5x93t2roykj6.png)
The number of favourable outcomes is,
![\begin{gathered} n(A)=n(Rolling\text{ a 3})=1 \\ n(B)=n(Rolling\text{ a 4\rparen}=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ovkroy27mr2d6ybomthh54k5tcdnvwlt1k.png)
The probability of rolling a 3 or a 4 is,
![\begin{gathered} P(A\cup B)=(n(A))/(n(S))+(n(B))/(n(S)) \\ =(1)/(6)+(1)/(6) \\ =(2)/(6) \\ =(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vs0rhirbfhxobceypyy4eno1t0sok5hc8m.png)
Final answer: Option C
The probability of rolling a 3 or a 4 is,
![(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rshimc01547v0bylxspiig5y5rp1hyhlbx.png)