34.2k views
1 vote
In the diagram below, assume that all points are given in polar coordinates. Determine the rectangular coordinates for each point. Visually check your answers to ensure they make sense.(r,θ)=(2,π/6) corresponds to (x,y)=(r,θ)=(2.4,π/2) corresponds to (x,y)=(r,θ)=(4.4,13π/12) corresponds to (x,y)=(r,θ)=(4.4,5π/3) corresponds to (x,y)=

In the diagram below, assume that all points are given in polar coordinates. Determine-example-1
User Spadelives
by
4.1k points

1 Answer

3 votes

The rectangular coordinates of the polar form are


x=r\cos \theta
y=r\sin \theta

a) The first point is


\begin{gathered} (2,(\pi)/(6)) \\ r=2,\theta=(\pi)/(6) \end{gathered}

Substitute them in the form above


\begin{gathered} x=2\cos ((\pi)/(6))=2(\frac{\sqrt[]{3}}{2})=\sqrt[]{3} \\ y=2\sin ((\pi)/(6))=2((1)/(2))1 \\ (x,y)=(\sqrt[]{3},1) \end{gathered}

b) The second point is


(2.4,(\pi)/(2))
\begin{gathered} x=2.4\cos ((\pi)/(2))=2.4(0)=0 \\ y=2.4\sin ((\pi)/(2))=2.4(1)=2.4 \\ (x,y)=(0,2.4) \end{gathered}

c) The third point is


(4.4,(13\pi)/(12))
\begin{gathered} x=4.4\cos ((13\pi)/(12))=4.4(-\frac{\sqrt[]{6}+\sqrt[]{2}}{4})=(-1.1\sqrt[]{6}-1.1\sqrt[]{2}) \\ y=4.4\sin ((13\pi)/(12))=4.4(\frac{-\sqrt[]{6}+\sqrt[]{2}}{4})=(-1.1\sqrt[]{6}+1.1\sqrt[]{2}) \\ (x,y)=\lbrack(-1.1\sqrt[]{6}-1.1\sqrt[]{2}),(-1.1\sqrt[]{6}+1.1\sqrt[]{2})\rbrack \end{gathered}

d) The fourth point is


(4.4,(5\pi)/(3))
\begin{gathered} x=4.4\cos ((5\pi)/(3))=4.4((1)/(2))=2.2 \\ y=4.4\sin ((5\pi)/(3))=4.4(-\frac{\sqrt[]{3}}{2})=-2.2\sqrt[]{3} \\ (x,y)=(2.2,-2.2\sqrt[]{3)} \end{gathered}

User Arman Yeghiazaryan
by
4.4k points