ANSWER
-2.852i + 2.377 j
Step-by-step explanation
We have to find the projection of u onto v,
![proj_vu=\left(\frac{\vec{u}\cdot\vec{v}}v\right)\vec{v}](https://img.qammunity.org/2023/formulas/mathematics/college/ya0apo2yzr7zv22p03jnjea1n60xjon44z.png)
The vectors are:
• u = <-9, -5>
,
• v = <-6, 5>
Let's find the dot product,
![\vec{u}\cdot\vec{v}=u_xv_x+u_yv_y=(-9)(-6)+(-5)(5)=54-25=29](https://img.qammunity.org/2023/formulas/mathematics/college/xafvy4kth7dd8809eqidwyt5gb3ua2pgdt.png)
Now, find the modulus of v squared,
![|\vec{v}|^2=v_x^2+v_y^2=(-6)^2+(5)^2=36+25=61](https://img.qammunity.org/2023/formulas/mathematics/college/vfxagnczl6zz94y98xvi38vljvrfrgr9xd.png)
Now, we have to divide 29 by 61 and multiply each of the components of vector v by this constant,
![proj_vu=(29)/(61)\lt-6,5>\text{ }\approx\text{ }\lt-2.852,2.377>](https://img.qammunity.org/2023/formulas/mathematics/college/ch450yp7ghuxvczzv2ae6ze58q57p41xos.png)
Hence, the projection is the vector <-2.852, 2.377> or, using another notation, -2.852i + 2.377 j.