64.3k views
0 votes
11. If a point on a circle has a cos of theta equals 12/13 AND tan of theta is less than zero, then sin of theta equals 5/13 true or false?

User Jon Iles
by
8.1k points

1 Answer

6 votes

True

Step-by-step explanation

Step 1


\cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}}

then


\begin{gathered} \cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}}=(12)/(13) \\ \\ \frac{adjacent\text{ side}}{\text{hypotenuse}}=(12)/(13) \\ \text{adjacent side=12} \\ \text{hypotenuse}=13 \end{gathered}

Step 2

find y,use Pythagoras theorem


\begin{gathered} a^2+b^2=c^2 \\ 12^2+y^2=13^2 \\ y^2=13^2-12^2 \\ y^2=25 \\ \sqrt[]{y^2}=\sqrt[]{25} \\ y=5 \end{gathered}

Step 3

find sine of theta


\begin{gathered} \sin \text{ }\theta=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \text{replace} \\ \sin \text{ }\theta=(y)/(13) \\ \sin \text{ }\theta=(5)/(13) \end{gathered}

so, the answer is

TRUE

I hope this helps you

11. If a point on a circle has a cos of theta equals 12/13 AND tan of theta is less-example-1
11. If a point on a circle has a cos of theta equals 12/13 AND tan of theta is less-example-2
User Etheranger
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories