214k views
3 votes
Given g(x)=x^2-5x, find the equation of the secant line passing through (-3,g(-3)) and (4g(4)). Write your answer in form of y=mx+b

Given g(x)=x^2-5x, find the equation of the secant line passing through (-3,g(-3)) and-example-1
User Bnaya
by
7.3k points

1 Answer

0 votes

Given:


g(x)=x^2-5x\text{ ; (}-3,g(-3)),(4,g(4))
g(-3)=(-3)^2-5(-3)
g(-3)=9+15
g(-3)=24
g(4)=4^2-5(4)
g(4)=16-20
g(4)=-4

Equation of line with the points (-3,24) and (4,-4)


(y-y_1)/(y_2-y_1)=(x-x_1)/(x_2-x_1)
\frac{y-24_{}}{-4_{}-24_{}}=\frac{x+3_{}}{4_{}+3_{}}
\frac{y-24_{}}{-28_{}}=\frac{x+3_{}}{7_{}}
\frac{y-24_{}}{-4_{}}=\frac{x+3_{}}{1_{}}
y-24_{}_{}=-4(x+3)_{}_{}
y_{}=-4x-12+24
y=-4x+12

User Kyle Lahnakoski
by
7.6k points