we have the function
![y=200(0.75)^t](https://img.qammunity.org/2023/formulas/mathematics/college/81wlanvu3r4h79lk58aaenbfl5w0kimkxu.png)
In this problem, we have an exponential decay function because the value of the base of the exponential function is less than 1
b=0.75
b< 1 -----> exponential decay function
Part b
Find out the annual percent decrease
b=0.75
b=1-r
0.75=1-r
r=1-0.75
r=0.25
r=25%
therefore
The annual percent decrease is 25%
Part c
For y=$50
substitute in the given equation
![50=200(0.75)^t](https://img.qammunity.org/2023/formulas/mathematics/college/ifxoywpi9hqwf6gv1mghaii19ydkw61s67.png)
Solve for t
![(50)/(200)=(0.75)^t](https://img.qammunity.org/2023/formulas/mathematics/college/x8dcv8igfjixuj7sbfrur0xic357jv58tf.png)
Apply log on both sides
![\log ((50)/(200))=\log (0.75)^t](https://img.qammunity.org/2023/formulas/mathematics/college/dkpao1qj2lghtzfdmw0f72nvue79r3eh2p.png)
![\log ((50)/(200))=x\cdot\log (0.75)](https://img.qammunity.org/2023/formulas/mathematics/college/fz1e4of9ya2jk8k34stcebvp8bdbxg8th6.png)
x=4.8 years