Let X be the normally distributed random variable representing the time hiker takes to walk the trail.
Given that mean and standard deviation are 30.1 and 3.6 minutes, respectively,
![\begin{gathered} \mu=30.1 \\ \sigma=3.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7ckcxc1bun95tnikdmhqhhwtusefejv9pu.png)
The sample size is 4,
![n=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/8kdg5auj18v9mli51cp6fk817r2dz5zyx9.png)
The z-score corresponding to any value of 'x' is given by,
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
So the probability that the mean time for the sample is less than 28 minutes is calculated as,
![\begin{gathered} P(X<28)=P(z<(28-30.1)/(3.6)) \\ P(X<28)=P(z<-0.58) \\ P(X<28)=P(z>0.58) \\ P(X<28)=P(z>0)-P(0From the Standard Normal Distribution Table,[tex]\varnothing(0.58)=0.2190]()
Substitute the value,
![\begin{gathered} P(X<28)=0.5-0.2190 \\ P(X<28)=0.281 \\ P(X<28)=28.1\text{ percent} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dapdvsgogskw0bjqxy2ghriczwwd215a2y.png)
Thus, there is approximately 28.1% probability that the mean time for the sample is less than 28 minutes.