Given the coordinates:
midpoint(-6, -20)
Endpoint 1(-4, -16)
To find endpoint 2, apply the midpoint formula below:

Where,
(xm, ym) = (-6, -20)
(x1, y1) = (-4, -16)
(x2, y2) = unknown
Let's find the mising coordinates (x2, y2)


Therefore, the other endpoint is (-8, -24)
ANSWER:
(-8, -24)