Solution:
Given that;
Line 1 passes through the points A(-15,-8) and B(-3,0)
To find the slope, m, of the line, the formula is
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ (x_1,y_1)=(-15,-8) \\ (x_2,y_2)=(-3,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/enhygjerkk3bgig3f9yqznn1ttk9roktbr.png)
Substituting the coordinates to find the slope of line 1
![\begin{gathered} m=(0-(-8))/(-3-(-15))=(8)/(-3+15)=(8)/(12)=(2)/(3) \\ m=(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qpsuisq5zglroszjlg54lz6yiolkxdxm3n.png)
Since, line 3 is parallel to line 1, then, they will have the same slope,
Thus, the slope pf line 3 is 2/3
Line 2 has equation 3x + 2y - 35 = 0.
Where line 3 intersects line 2 at x = 5, substitute for x into the equation of line 2 to find the value of y
![\begin{gathered} 3x+2y-35=0 \\ 3(5)+2y-35=0 \\ 15+2y-35=0 \\ -20=-2y \\ y=(-10)/(-2)=5 \\ y=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zonmctdynvbwt9qs4gwpmkrqhursc8a06j.png)
Where
The slope and the coordinates on line 3 are
![\begin{gathered} m=(2)/(3) \\ (x_1,y_1)=(5,10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/494x7rgihdqjt7yfw2dxl345yrjoygtspu.png)
Applying the point-slope formula to find the equation of line 2
![\begin{gathered} y-y_1=m(x-x_1) \\ y-10=(2)/(3)(x-5) \\ 3(y-10)=2(x-5) \\ 3y-30=2x-10 \\ 2x-10-(3y-30)=0 \\ 2x-10-3y+30=0 \\ 2x-3y+20=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ajwxpaxbzzldla5zygi4eal009p7qn1we.png)
Hence, the equation of line 3 is
![2x-3y+20=0](https://img.qammunity.org/2023/formulas/mathematics/college/rd4wp5151giecc974uc1hh7e3zzimh5cf0.png)