Given:
Acceleration = 2.0 m/s²
θ = 5.5 degrees above the horizontal.
Let's solve for the following:
(a) Hwo far horizontally has the car travelled in 12 seconds.
To find the horizontal distance, apply the formula:
![d_x=d\cos \theta](https://img.qammunity.org/2023/formulas/physics/college/5vd9myi1i01v7qic47as3v83a3brefs77i.png)
To solve for d, apply the motion formula:
![d=V_it+(1)/(2)at^2](https://img.qammunity.org/2023/formulas/physics/college/md44lxrjlbvqzuvipue5l4aiqaqfolydnm.png)
Where:
Vi is the initial velocity = 0 m/s
t is the time = 12 seconds
a is the acceleration = 2.0 m/s²
Thus, we have:
![\begin{gathered} d=0(12)+(1)/(2)\ast2.0\ast12^2 \\ \\ d=0+144 \\ \\ d=144\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/509kw70400pp6csui6ut2fbrqj7bx6r6f3.png)
Thus, to find the horizontal distance, we have:
![\begin{gathered} d_x=d\cos \theta \\ \\ d_x=144\cos 5.5 \\ \\ d_x=143.3\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9r4d1rxewj5cnm0fzlapj4xdd9mw0uf9cv.png)
The car traveled 143.3 meters horizontally in 12 seconds.
• (b) To find the vertical distance in 12 seconds, apply the formula:
![d_y=d\sin \theta](https://img.qammunity.org/2023/formulas/physics/college/49c5qu235iaq9ipcb8eh2akbp5gffoquat.png)
Thus, we have:
![\begin{gathered} d_y=144\sin 5.5 \\ \\ d_y=13.8\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/88uytzlbqfy3fezmad86ajupicldg2hz1c.png)
The car traveled 13.8 meters vertically in 12 seconds.
ANSWER:
(a) 143.3 m
(b) 13.8 m