First, write the matrix equation that represents the given system:
![\begin{bmatrix}-4 & 1 \\ 3 & 2\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}=\begin{bmatrix}9 \\ 7\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/4apikx5gjcpj28wahueyqvps9yutvvo00l.png)
If we multiply both sides by the inverse of the coefficient matrix, we get:
![\begin{bmatrix}-4 & 1 \\ 3 & 2\end{bmatrix}^(-1)\begin{bmatrix}-4 & 1 \\ 3 & 2\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix}=\begin{bmatrix}-4 & 1 \\ 3 & 2\end{bmatrix}^(-1)\begin{bmatrix}9 \\ 7\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/3ut32ga5ktnbq7d4mizcf3m2h36ws7o9b0.png)
On the left member, the first two matrix factors cancel out. On the right member, find the explicit form of the inverse matrix:
![\begin{bmatrix}x \\ y\end{bmatrix}=-(1)/(11)\begin{bmatrix}2 & -1 \\ -3 & -4\end{bmatrix}^{}\begin{bmatrix}9 \\ 7\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/nw628ozw1fbc13l1q9214rvrxwa7gvjjs8.png)
Remember that this rule can be used for finding the inverse of a 2x2 matrix:
![\begin{bmatrix}a & b \\ c & d\end{bmatrix}^(-1)=(1)/(ad-bc)\begin{bmatrix}d & -b \\ -c & a\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/dapi5wumv6jxwz7scaytgi6221cnebb5zy.png)
Next, perform the matrix product on the right member of the equation:
![\begin{bmatrix}x \\ y\end{bmatrix}=-(1)/(11)^{}\begin{bmatrix}11 \\ -55\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/f38euqe0tcqqvfl9n1sbqbrlt045vylf7t.png)
Finally, multiply the matrix on the right member by its coefficient of -1/11:
![\begin{bmatrix}x \\ y\end{bmatrix}=^{}\begin{bmatrix}-1 \\ 5\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/kdncudfhwixw9rv1glkey12vhfhb6qzal7.png)