Given the below function
f(x) = -2(0.5)^x
Domain: 0, 1 ,2
Let the value of the domain = x
To find the function, substitute the value of into the above function
![\begin{gathered} f(x)=-2(0.5)^x \\ \text{Let x = }0 \\ f(0)\text{ = -2(0}.5)^0 \\ \text{ According to the law of indicies, anything raised to the power of 0 = 1} \\ f(0)\text{ = -2 x 1} \\ f(0)\text{ = -2} \\ \text{When x = 1} \\ f(1)=-2(0.5)^1 \\ f(1)\text{ = -2 x 0.5} \\ f(1)\text{ = -1} \\ \text{When x = 2} \\ f(2)=-2(0.5)^2 \\ f(2)\text{ = }-2\text{ x 0.25} \\ f(2)\text{ = - 0.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v6a7v3s3b00dp8dkf1si21ynmhot97fc4y.png)
From the above solution, we can now draw out our table
x 0 1 2
f(x) -2 -1 -0.5
Let us graph the above pairs