Given:
![log_2(512)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ot05doci8m1uuyu7u8ri5rrisj41vexy8y.png)
To solve it, follow the steps below.
Step 01: Use the given hint (512 = 32*16).
![log_2(32*16)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bnr22hsuwrjkpu1z98cnuqp17lv7jlm42e.png)
Step 02: Use the product rule for logarithms.
According to the product rule:
![log(a*b)=loga+logb](https://img.qammunity.org/2023/formulas/mathematics/high-school/vxqi408sgk0lmm5bh2ieo98h07p3k4zy2o.png)
Then,
![log_2(32*16)=log_232+log_216](https://img.qammunity.org/2023/formulas/mathematics/high-school/nb6lwvoe48y3skdtpr4usge5hebmsn2at3.png)
Step 03: Use the definition of the log to solve the problem.
Given the definition:
![log_ba=c\Leftrightarrow b^c=a](https://img.qammunity.org/2023/formulas/mathematics/high-school/4xo6dl7dz7qbbi5gkv4jpv9i35be898dkl.png)
So, let's solve each part of the equation.
![log_232=x\Leftrightarrow2^x=32](https://img.qammunity.org/2023/formulas/mathematics/high-school/s1nqutfkmn75gkxj2yj9sanyiydlmb8c8z.png)
In order to find x, let's factor 32.
32 | 2
16 | 2
8 | 2
4 | 2
2 | 2
1
2⁵ = 32
![\begin{gathered} 2^x=2^5 \\ Then, \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ohv4vr8eab8nej54c9cnr0iow3tg49iunm.png)
And,
![log_232=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/duk3e3iaspcshjjwhctzippwfqjkwiqzxl.png)
Now, let's solve the second term.
![\begin{gathered} log_216=y\Leftrightarrow2^y=16 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jlbt9uk9hkw6lb76zywt5wym54986getnc.png)
Let's factor 16:
16 | 2
8 | 2
4 | 2
2 | 2
1
2⁴ = 16
Substituting it in the equation:
![\begin{gathered} 2^y=2^4 \\ Since\text{ }the\text{ }bases\text{ }are\text{ }the\text{ }same,\text{ }the\text{ }exponents\text{ }must\text{ }be\text{ }the\text{ }same\text{ }too \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5jdcq5pitxzqtt9t0i4itzmu2a526zh39w.png)
Then,
![log_216=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/bpdqaja46f6y0z811o0875ebwsvgde27zh.png)
Step 04: Substitute the solutions and solve the equations.
![\begin{gathered} log_232=5 \\ log_216=4 \\ Then, \\ log_232+log_216=5+4 \\ =9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gvox23lpa9jrk9uzi25n62pvnlft8evrwv.png)
Answer: 9.