Answer:
![\textsf{d)} \quad 1=a(-3-2)^2+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/xkcoxvl17nft5qf8egjwcccujdj6potu39.png)
Explanation:
![\boxed{\begin{minipage}{5.6 cm}\underline{Vertex form of a quadratic equation}\\\\$y=a(x-h)^2+k$\\\\where:\\ \phantom{ww}$\bullet$ $(h,k)$ is the vertex. \\ \phantom{ww}$\bullet$ $a$ is some constant.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/lwsssedfdo17qxnmxqcknfxhb1zdancp78.png)
Given information:
- Vertex = (2, 5)
- Point on the parabola = (-3, 1)
Therefore:
To find the constant "a", substitute found values into the vertex formula:
![\implies 1=a(-3-2)^2+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/hj6lwzciq3do8q9yspyt3h27symi5hps77.png)
Additional information
Solve the equation for a:
![\implies 1=a(-5)^2+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/gu155yxwa4ruizishv96bqaofbkck2ptfz.png)
![\implies 1=25a+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/u43imsdlortorephql9i4392rqr2hg9v61.png)
![\implies -4=25a](https://img.qammunity.org/2023/formulas/mathematics/high-school/9j9eboziptp9r8w6rz1dho3mffx4g00vw7.png)
![\implies a=-(4)/(25)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lzqd1iebj67msxxdgcio8be2iw3yegg76c.png)
Therefore, the equation of the parabola in vertex form is:
![y=-(4)/(25)\left(x-2\right)^2+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/64agrfh3v87vzkcdhz5e2un3gohed4rxzq.png)