we calculate the vinegar on 220 ml
![\begin{gathered} 220\cdot(7)/(100) \\ =15.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6mayhgkxwjbayq0xe5h42gz6v2o0mi9jv4.png)
the dressing will have 15.4 ml of vinegar
now we can raise a sum
![x+y=220](https://img.qammunity.org/2023/formulas/mathematics/college/3g9dyw208motywar2eitfse66lixnrpkd9.png)
where X is the first brand and Y the second brand on ml
now the percent vinegar sum we know the result is 15.4 wich corresponds to 7%
![\begin{gathered} x\cdot(6)/(100)+y\cdot(11)/(100)=15.4 \\ \\ 0.06x+0.11y=15.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/acbrbg01nyhquoo1xe0834ezamy3jtuywv.png)
we have two unknowns and equations, so we can solve by any method.
i will solve y on the first equation
![\begin{gathered} x+y=220 \\ y=-x+220 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4sb17cbrp9rxei9sm2sd6ygfag6zgu0v52.png)
and replace on the second to find x
![\begin{gathered} 0.06x+0.11(-x+220)=15.4 \\ 0.06x-0.11x+(121)/(5)=15.4 \\ -(1)/(20)x=15.4-(121)/(5) \\ -(1)/(20)x=-(44)/(5) \\ x=(-44*20)/(5*-1) \\ x=176 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7s8k57jg4lidg5zdursv5grfeksxw2l607.png)
then replace x on any equation to solve y
![\begin{gathered} x+y=220 \\ 176+y=220 \\ y=44 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6cc21218co50mrwoj8fi60ouavsw92y88d.png)
for each brand should she use x=176ml and y=44ml