41.7k views
14 votes
Section 5.2 Problem 18:

Solve the initial value problem and graph the solution.

y'' + 7y' + 12y = 0

y(0) = - 1

y'(0) = 0


User Compuguru
by
7.5k points

1 Answer

12 votes

Answer:


y(x)=-(6)/(7)e^(-4x)+(1)/(7)e^(3x) (See attached graph)

Explanation:

Given Second-Order Homogeneous Differential Equation


y''+7y'+12y=0,y(0)=-1,y'(0)=0

Use Auxiliary Equation


m^2+7m+12=0\\\\(m+4)(m+3)=0\\\\m=-4,\: m=3

General Solution for Distinct Real Roots


y(x)=C_1e^(m_1x)+C_2e^(m_2x)\\\\y(x)=C_1e^(-4x)+C_2e^(3x)

Take the derivative of y(x)


y'(x)=-4C_1e^(-4x)+3C_2e^(3x)

Create a system of equations given initial conditions


y(x)=C_1e^(-4x)+C_2e^(3x)\\\\y(0)=C_1e^(-4(0))+C_2e^(3(0))=-1\\\\C_1+C_2=-1


y'(x)=-4C_1e^(-4x)+3C_2e^(3x)\\\\y'(0)=-4C_1e^(-4(0))+3C_2e^(3(0))=0\\\\-4C_1+3C_2=0

Solve the system of equations


\left \{ {{C_1+C_2=-1} \atop {-4C_1+3C_2=0}} \right.\\\\\left \{ {{4C_1+4C_2=-1} \atop {-4C_1+3C_2=0}} \right.\\\\7C_2=-1\\\\C_2=-(1)/(7)


C_1+C_2=-1\\\\C_1-(1)/(7)=-1\\ \\C_1=-(6)/(7)

Final Solution


y(x)=C_1e^(-4x)+C_2e^(3x)\\\\y(x)=-(6)/(7)e^(-4x)+(1)/(7)e^(3x)

Section 5.2 Problem 18: Solve the initial value problem and graph the solution. y-example-1
User David Fulton
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories