Given the function;
![f(x)=-4x^2-32x-60](https://img.qammunity.org/2023/formulas/mathematics/college/ylfuwko2tp3kcgbbvaluy5d95uqh75671e.png)
The maximum value of a function is the place where a function reaches its highest point, or vertex, on a graph. If a quadratic function has a negative "a" term, it will also have a maximum value.
Thus, the function has a maximum value.
Also;
![\begin{gathered} f^(\prime)(x)=(-4*2)x^(2-1)-(32*1)x^(1-1) \\ f^(\prime)(x)=-8x-32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yqusss28ot33ca80msd9xbpkdsv8xxj7re.png)
At maximum value, the derivative is zero. Thus;
![\begin{gathered} -8x-32=0 \\ -8x=32 \\ x=(32)/(-8) \\ x=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/esc6c7ijux2hzdqkdd66puupxin8pb1sot.png)
Then,
![undefined]()