161k views
2 votes
Find the midpoint of the longest side of a triangle withvertices at W(0,0), X(5,0), and Y(0,-4).

User Shateek
by
8.1k points

1 Answer

4 votes

Let's begin by identifying key information given to us:


\begin{gathered} W\mleft(0,0\mright),X\mleft(5,0\mright),Y(0,-4) \\ \\ \end{gathered}

We will find the longest side as shown below:


\begin{gathered} WX=(5-0,0-0)=(5,0) \\ XY=(5-0,0--4)=(5,4) \\ WY=(0-0,0--4)=(0,4) \\ We\text{ will calculate using the formula:} \\ d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ d_(wx)=\sqrt[]{(5-0)^2+(0-0)^2}=\sqrt[]{5^2+0^2}=\sqrt[]{25+0}=\sqrt[]{25} \\ d_(wx)=5 \\ \\ d_(xy)=\sqrt[]{(5-0)^2+(0--4)^2}=\sqrt[]{5^2+4^2}=\sqrt[]{25+16}=\sqrt[]{41} \\ d_(xy)=\sqrt[]{41} \\ \\ d_(wy)=\sqrt[]{(0-0)^2+(0--4)^2}=\sqrt[]{0^2+4^2}=\sqrt[]{0+16}=\sqrt[]{16} \\ d_(wy)=4 \end{gathered}

Therefore, the longest side is XY. The midpoint of XY is given by:


\begin{gathered} Midpoint(XY)=((5+0)/(2),(0+4)/(2)) \\ Midpoint(XY)=((5)/(2),(4)/(2)) \\ Midpoint(XY)=((5)/(2),2) \\ Midpoint(XY)=(2.5,2) \end{gathered}

The midpoint is (2.5, 2)

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories