Answer:
The values of x and angle ABC are;
![\begin{gathered} x=11 \\ \measuredangle ABC=56^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yw7waki4haug5zxt3jil0hshebm8sfvcp8.png)
Step-by-step explanation:
From the instruction above;
Line BX bisects angle ABC.
So;
![\measuredangle ABX=\measuredangle CBX](https://img.qammunity.org/2023/formulas/mathematics/college/h16rx6zikapexbznlve8qikbzqlxl9spzj.png)
Given;
![\begin{gathered} \measuredangle ABX=4x-16 \\ \measuredangle CBX=2x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q3q8hb8ob63kbk5oncyskhit4g1kdu23sy.png)
Substituting this values, we have;
![\begin{gathered} \measuredangle ABX=\measuredangle CBX \\ 4x-16=2x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ybjfzd4snuyuy8gwu9ifmiuqk9mpixygzv.png)
Then we can solve for x; collecting the like terms
![\begin{gathered} 4x-2x=6+16 \\ 2x=22 \\ x=(22)/(2) \\ x=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dt38muqbznh85c478yrwvle414uvpz0itn.png)
Then we can now solve for angle ABC;
Since line BX bisect angle ABC, Angle ABC equal 2 times angle ABX;
![\begin{gathered} \measuredangle ABC=2(\measuredangle ABX) \\ \measuredangle ABC=2(4x-16) \\ \measuredangle ABC=8x-32 \\ \text{ since x=}11 \\ \measuredangle ABC=8(11)-32 \\ \measuredangle ABC=88-32 \\ \measuredangle ABC=56^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o5rt4wlwl5ulo844f8hqiszivcgfobfa23.png)
Therefore, the values of x and angle ABC are;
![\begin{gathered} x=11 \\ \measuredangle ABC=56^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yw7waki4haug5zxt3jil0hshebm8sfvcp8.png)