We have the functions:
![\begin{gathered} g\mleft(x\mright)=4x-2 \\ h\mleft(x\mright)=x^2-5x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v3u1nxkf6zrm76kgfpoare1it5ei3esc5m.png)
And we are asked for:
![g\mleft(x\mright)-h\mleft(x\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/z3pn1g0vmynpgn0a6kwyvadnmxq43wmti1.png)
Which is to subtract the function h(x) from the function g(x).
The result of this subtraction is as follows:
![g\mleft(x\mright)-h\mleft(x\mright)=4x-2-(x^2-5x)](https://img.qammunity.org/2023/formulas/mathematics/college/z4tqhkryutm08cpmpz84z6pyrxwgwiplev.png)
First, we multiply the minus sign outside the parenthesis by the numbers inside it:
![g(x)-h(x)=4x-2-x^2+5x](https://img.qammunity.org/2023/formulas/mathematics/college/p9wjjcbmhq7u2zsziksz2u6p7rs02nrwet.png)
Now, we leave the term with the greatest exponent at the beginning and we add the like terms 4x and 5x which result in 9x.
So the simplified expression is as follows:
![g\mleft(x\mright)-h\mleft(x\mright)=-x^2+9x-2](https://img.qammunity.org/2023/formulas/mathematics/college/bdue84wofey9vw66vjoam68wf8815kizeu.png)
Answer:
![g(x)-h(x)=-x^2+9x-2](https://img.qammunity.org/2023/formulas/mathematics/college/fw9684i9ixp1i12ffnest7c75hkkl4pvm3.png)