The slopes of perpendicular lines are opposite reciprocals.
For the given function:
![5y=-6x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/51qsa1bviry4orirt3t38zo4hakj4ning1.png)
Solve y to identify the slope (y=mx+b, m is the slope)
![\begin{gathered} y=-(6)/(5)x+(2)/(5) \\ \\ \text{Slope:} \\ m=-(6)/(5) \\ \\ \text{Slope of perpendicular line:} \\ -(1)/(m) \\ \\ -(1)/(-(6)/(5))=(5)/(6) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3aong0pgkcd4mjb1nccc2s5b6fnqy0wc0h.png)
The slope of the perpendicular line to the given function is 5/6. For the given options the equation with slope 5/6 is: B. 6y=5x+3
![\begin{gathered} 6y=5x+3 \\ \\ y=(5)/(6)x+(3)/(6) \\ \\ \text{slope: }(5)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1g3n57kf5ux1bna5bqexysbf0i51u3pjr8.png)