172k views
4 votes
The equation (k+1)x² + 2(k+ 2)x= 3(k + 2) has real roots. Find the possible values of k.

User Mo Ali
by
8.8k points

1 Answer

3 votes

In order to find the possible values of k, first let's put the equation in the standard form and equate it to zero:


ax^2+bx+c=0

So we have:


\begin{gathered} (k+1)x^2+2(k+2)x=3(k+2) \\ (k+1)x^2+2(k+2)x-3(k+2)=0 \\ a=k+1 \\ b=2(k+2) \\ c=-3(k+2) \end{gathered}

Now, let's calculate the discriminant:


\begin{gathered} \Delta=b^2-4ac \\ \Delta=\lbrack2(k+2)\rbrack^2-4\cdot(k+1)\lbrack-3(k+2)\rbrack \\ \Delta=4(k^2+4k+4)+12(k+1)(k+2) \\ \Delta=4k^2+16k+16+12(k^2+3k+2) \\ \Delta=4k^2+16k+16+12k^2+36k+24 \\ \Delta=16k^2+52k+40 \end{gathered}

In order to have real roots, the value of the discriminant must be greater than zero, so we have:


\begin{gathered} \Delta>0 \\ 16k^2+52k+40>0 \\ 4k^2+13k+10>0 \\ k=\frac{-13\pm\sqrt[]{13^2-4\cdot4\cdot10}}{2\cdot4} \\ k=\frac{-13\pm\sqrt[]{169-160}}{8} \\ k_1=(-13+3)/(8)=-(10)/(8)=-1.25 \\ k_2=(-13-3)/(8)=-2 \end{gathered}

Since the coefficient of k² is positive, the discriminant will be positive for k < k2 or k > k1, that is:


\begin{gathered} k<-2\text{ or }k>-1.25 \\ (-\infty,-2)\cup(-1.25,\infty) \end{gathered}

The equation (k+1)x² + 2(k+ 2)x= 3(k + 2) has real roots. Find the possible values-example-1
User Hossam Khamis
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories