ANSWERS
• After ,10, seconds: ,88 grams
,
• After ,20, seconds: ,44 grams
,
• After ,30, seconds: ,22 grams
,
• After ,40, seconds: ,11 grams
,
• After ,50, seconds: ,5.5 grams
Step-by-step explanation
The amount of substance remaining is,
![N(t)=N_o\left((1)/(2)\right)^(t/h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/50ndqqwt20gkynd1c1vk8pb1ky6vfpsvdd.png)
Where N₀ is the initial quantity of the substance, h is the half-life of the substance, t is the time and N(t) is the quantity remaining.
In this case, the initial quantity, N₀, is 176 grams and the half-life, h, is 10 seconds, so we have the formula,
![N(t)=176\left((1)/(2)\right)^(t/10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yy91rjzti9kt626oxipd0p6nazh0hkifgs.png)
And we have to find N(10), N(20), N(30), N(40), and N(50):
![N(10)=176\left((1)/(2)\right)^(10/10)=176\cdot(1)/(2)=88](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ybficr927oqk6kb3gkjdvg05o4juhg22t.png)
![N(20)=176\left((1)/(2)\right)^(20/10)=176\cdot(1)/(2^2)=176\cdot(1)/(4)=44](https://img.qammunity.org/2023/formulas/mathematics/high-school/m916t1pnf3gy1psflmv4yh9u7z9ynfnuu2.png)
![N(30)=176\left((1)/(2)\right)^(30/10)=176\cdot(1)/(2^3)=176\cdot(1)/(8)=22](https://img.qammunity.org/2023/formulas/mathematics/high-school/sd78lojx2sv1huqj9kwmg9vywg3f1b7b9w.png)
![N(40)=176\left((1)/(2)\right)^(40/10)=176\cdot(1)/(2^4)=176\cdot(1)/(16)=11](https://img.qammunity.org/2023/formulas/mathematics/high-school/4le9n34o40y8h7yb8r5twhju140hyxjdo3.png)
![N(50)=176\left((1)/(2)\right)^(50/10)=176\cdot(1)/(2^5)=176\cdot(1)/(32)=5.5](https://img.qammunity.org/2023/formulas/mathematics/high-school/jr27swv202ivi6p684jdbb74uoi7w8vp70.png)
Hence, the amount of substance remaining after each period of time is:
• 10, seconds: ,88 grams
,
• 20, seconds: ,44 grams
,
• 30, seconds: ,22 grams
,
• 40, seconds: ,11 grams
,
• 50, seconds: ,5.5 grams