Given the equation:
![y=mx+b,](https://img.qammunity.org/2023/formulas/mathematics/college/4dutw7uwqnrl059bgov2p1mbj6cypja7zr.png)
if you substitute the given data, you get the following system of equations:
![\begin{gathered} 7760=240m+b, \\ 11750=450m+b. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bi9pbjjzo5z0b41k757a4nrvgp8szvxj3u.png)
Subtracting the first equation from the second one, you get:
![11750-7760=450m-240m+b-b.](https://img.qammunity.org/2023/formulas/mathematics/college/1a3m34ynyv1lpwf929xhzd6ckwysi7y6zg.png)
Simplifying you get:
![3990=210m.](https://img.qammunity.org/2023/formulas/mathematics/college/k4sic47t2ysauqwl89yrctnjjbarw9sznf.png)
Solving for m, you get:
![m=(3990)/(210)=19.](https://img.qammunity.org/2023/formulas/mathematics/college/2ep62evziep594g192yceorphjxv724x35.png)
Substituting m=3990 in the first equation, and solving for b you get:
![\begin{gathered} 7760=19(240)+b, \\ b=7760-19(240), \\ b=3200. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m3hwgvgkfykv6r7comba1hkddt18llv6ek.png)
Answer:
![y=19x+3200.](https://img.qammunity.org/2023/formulas/mathematics/college/2c92jqlrjgs4y2uxi57gdsox8fv9a4ywxs.png)