Step-by-step explanation
We need to simplify this product of expressions:
![(3x+3)\cdot(4x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/z7blblij5pm6dgucaveljt4r0231hyod8k.png)
We must use the distributive property of the multiplication here. We take the left expression and we multiply both terms of the right expression by it:
![(3x+3)\cdot(4x-6)=(3x+3)\cdot4x+(3x+3)\cdot(-6)](https://img.qammunity.org/2023/formulas/mathematics/college/ebjhwnfs7jskifb3364onf3jd1edjduq6c.png)
Now we have the sum of two expressions. We apply the distributive property of the multiplication to both:
![(3x+3)\cdot4x+(3x+3)\cdot(-6)=3x\cdot4x+3\cdot4x+3x\cdot(-6)+3\cdot(-6)](https://img.qammunity.org/2023/formulas/mathematics/college/snp1ruub5grvs7sf2in29wv2mkmgn328vt.png)
We continue operating:
![3x\cdot4x+3\cdot4x+3x\cdot(-6)+3\cdot(-6)=12x^2+12x-18x-18](https://img.qammunity.org/2023/formulas/mathematics/college/m9b7bq7tdrho0y1evht754mdkqumjrqy34.png)
We can use the distributive property inversely in the terms with x:
![\begin{gathered} 12x^2+12x-18x-18=12x^2+(12-18)\cdot x-18 \\ 12x^2+(12-18)\cdot x-18=12x^2-6x-18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g4n3e6etml5kvssxvh75hh856ywfpf2lh1.png)
Answer
Then the answer is:
![12x^2-6x-18](https://img.qammunity.org/2023/formulas/mathematics/college/bg7twkxjtnudiog2g27ef7t0b2bu8wof72.png)