The work done is given as,
![W=F\cdot x\ldots(1)](https://img.qammunity.org/2023/formulas/physics/college/62vwh5zkjmw01ggtg7imzd0o3vu0j35vwe.png)
Here, F is the force and x is the displacement.
The velocity is defined as,
![\begin{gathered} v=\frac{displacement}{\text{time}} \\ =(x)/(t)\ldots(2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/bqc0nxd62igdtmglpdwlrqsrt969tixq3o.png)
The power is defined as the rate of doing work. Mathematically,
![P=(W)/(t)](https://img.qammunity.org/2023/formulas/physics/college/4qsgpmv2fzm7zar8pn1q3gnisiytre4iej.png)
Using equation (1),
![\begin{gathered} P=(F\cdot x)/(t) \\ =F\cdot(x)/(t) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qzzymoa185e3peqneuxlbc8i1nwbfr80tk.png)
Using equation (2),
![P=F\mathrm{}v](https://img.qammunity.org/2023/formulas/physics/college/1gt3t5sbiljm1xsp31xlzz6yytxzz54gdf.png)
Hence, the power can also be defined as force time velocity. Therefore, the given statement is true.