36.4k views
1 vote
Triangle NMO has vertices at N(−5, 2), M(−2, 1), O(−3 , 3). Determine the vertices of image N′M′O′ if the preimage is reflected over x = −4. N′(−3, 2), M′(−6, 1), O′(−5, 3) N′(−5, −6), M′(−2, −5), O′(−3, −7) N′(−5, −2), M′(−2, −3), O′(−3, −1) N′(−4, 2), M′(−1, 1), O′(−2, 3)

2 Answers

5 votes

Answer:

n,(-5, -6), M(-2, -5) o(-3, -7)

Explanation:

other guy wrong but here you go.

User Jstanley
by
5.2k points
4 votes

Notice that the reflection is over a line of the form x=constant; in this case, the y-coordinate of the reflected point stays the same while the x-coordinate changes as expressed by the transformation below


\begin{gathered} y\rightarrow y \\ x\rightarrow2a+x \\ where \\ x=a\rightarrow\text{ vertical line} \end{gathered}

Hence, in our case


\Rightarrow(x,y)=(2*-4-x,y)=(-8-x,y)

Transform points N, M, and O accordingly,


\begin{gathered} \Rightarrow N^(\prime)=(-8-(-5),2)=(-8+5,2)=(-3,2) \\ \Rightarrow M^(\prime)=(-8-(-2),1)=(-6,1) \\ \Rightarrow O^(\prime)=(-8-(-3),3)=(-5,3) \end{gathered}

Therefore, the answer is the first option (top to bottom)

User John Jacecko
by
4.7k points