SOLUTION
The equation of a line is given by
![\begin{gathered} y=mx+c \\ \text{where m=slope and c = intercept on y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2qr2327bv7fsnyixh776k567x8ftw2fay7.png)
From the question, we have the following
![\begin{gathered} \text{slope,m}=4 \\ \text{ point(-2,-13)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i9iu3na48n59pyaru1lm6g527j8s5gw8kb.png)
Using the slope and one point form,
![\begin{gathered} y-y_1=m(x-x_1) \\ \text{where m=4,} \\ x_1=-2,y_1=-13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5po8ouxitmx8vs2fcsnibomi817rshv2vw.png)
Substituting the parameters into the formula, we obtain
![\begin{gathered} y-(-13)=4(x-(-2)) \\ y+13=4(x+2) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/17cphnc052qkfm4vbe2r59ogsa6c0jt6ux.png)
The expand the parenthesis and simplify
![\begin{gathered} y+13=4x+8_{}^{} \\ y=4x+8-13 \\ y=4x-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j35963blvvj9dfecuxd56qdrznhefeh4md.png)
Hence
The equation of the line is
y=4x-5 or y-4x=-5