Given;
The movie aspect ratio is;
![1.85\colon1](https://img.qammunity.org/2023/formulas/mathematics/college/43zwgo5qpz2ty0bu94jtpjeuurww5qfmte.png)
Size of the diagonal of the Televison;
![72\text{ inches}](https://img.qammunity.org/2023/formulas/mathematics/college/5mh4zrpc3138jk7xz6ig3r81yr81j99qsg.png)
Ratio of the sides of the Television;
![16\colon9](https://img.qammunity.org/2023/formulas/mathematics/college/owofalbq6jhngrh23k82yysepvyjtdg2v6.png)
Using the ratio and a factor x we can find the width and height of the television.
The width will be;
![16x](https://img.qammunity.org/2023/formulas/mathematics/high-school/qv6deytewh6kx6irrky7f80vcez87szifo.png)
And height wil be;
![9x](https://img.qammunity.org/2023/formulas/mathematics/high-school/k8vl6bmxnd2gw7evdqdko7gthzbrv6xhli.png)
Using pythagoras theorem, since we have the value of the diagonal length of the Television;
![\begin{gathered} a^2+b^2=c^2 \\ (16x)^2+(9x)^2=72^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bi7i6tjzj2l7g5n4t0gl8ynb7q8as7m8t3.png)
solving for x we have;
![\begin{gathered} 256x^2+81x^2=5184 \\ 337x^2=5184 \\ x^2=(5184)/(337) \\ x=\sqrt[]{(5184)/(337)} \\ x=3.922 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fmn4jwcwed5fpv5iq37c1xff20ezfg8smc.png)
Since we have x, we can now substitute to get the width and height.
![\begin{gathered} \text{width w}=16x=16(3.922)=62.75\text{ inches} \\ \text{height h}=9x=9(3.922)=35.30\text{ inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v6o08gfkagnas2tftk66dnhaj5kg9ijjdf.png)
Now we can calculate the area of the Television from its width and height ;
![\begin{gathered} \text{Area A = Height }* Width \\ A=35.30*62.75 \\ A=2,215.075inch^2 \\ A=2,215inch^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qx1dhmj5pgvqdvqhmpyu2fnnsvmn0banly.png)
The area of the Television is 2,215 square inch
Next we need to find the Area of the image;
The height of the image is;
![\begin{gathered} \text{Height of image=}\frac{width\text{ of TV}}{\text{Aspect ratio}} \\ I_h=(62.75)/(1.85) \\ I_h=33.92 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7b47n6o30vc2552cfcuhaecxyw39fo1dgu.png)
The width of the image will be the same as the width of the TV since the Calculated height of image is less than the height