SOLUTION
From the question, we are given below
![\begin{gathered} \bar{x}=mean=33.2, \\ s=\text{ standard deviation = 7.3} \\ n=\text{ sample size = 17} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ymnrhtdgve4hospamc3qyurxoq94d5to8i.png)
Applying the confidence interval formula for t-distribution, we have
![\begin{gathered} \bar{x}\pm t*(s)/(√(n)) \\ 33.2\pm t0.99*(7.3)/(√(17)) \\ t0.99\text{ from the calculator = 2.576} \\ 33.2\pm2.576*(7.3)/(√(17)) \\ 33.2\pm4.56 \\ \backslash \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uprmegmyh9x1g034vxoflxcicvhiuiwx9t.png)
So, we have
![\begin{gathered} 33.2-4.56,33.2+4.56 \\ \left\lbrack28.64,37.76\right? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7di8o4wucnoxlkw9hloczoh05b4jpeh5py.png)
Therefore the 99% confidence interval for the population mean is:
![28.64\leq\mu\leq37.76](https://img.qammunity.org/2023/formulas/mathematics/college/v79fdx454bgcut85np9mhv8ihnz1wjnh4i.png)
The margin of error is 4.56
There is 99% chance that the confidence interval 28.64≤μ≤37.76 contains the true population mean.