Given that the pentagons ABCDE and JKLMN.
Let's find the length of KL.
Given:
AB = 3
BC = 2
CD = 4
DE = 3
AE = 5
KJ = 2.1
KL = x
LM = 2.8
MN = 2.1
JN = 3.5
Since the pentagons are similar, then the corresponding sides are in proportion.
Thus, we have:
![(AB)/(KJ)=(BC)/(KL)=(CD)/(LM)=(DE)/(MN)=(AE)/(JN)](https://img.qammunity.org/2023/formulas/mathematics/college/vh8ip5glzxtaf807qpferxnjdp2ud9u6ho.png)
To find the value of KL, apply the proportionality equation.
We have:
![(AB)/(KJ)=(BC)/(KL)](https://img.qammunity.org/2023/formulas/mathematics/college/noj63n2c1kyqs5fk0ij03gl3x7csxa9am3.png)
Input values into the equation:
![(3)/(2.1)=(2)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/ivkwyp7lbw9ws0jsadcnbfv2brgja5ohwl.png)
Let's solve for x.
Cross multiply:
![\begin{gathered} 3x=2*2.1 \\ \\ 3x=4.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l52g69csb44c5lai0vppqow168nwlcg3lk.png)
Divide both sides by 3:
![\begin{gathered} (3x)/(3)=(4.2)/(3) \\ \\ x=1.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vfcnwk80g331alhc043jni4l237xjpxxds.png)
Therefore, the value length of KL is 1.4 units.
ANSWER:
x = 1.4