Answer:
![A_(total)=12432in^2](https://img.qammunity.org/2023/formulas/mathematics/college/un2rlp0bflmonvh81cylgvoc7n900p70ab.png)
Step by step explanation:
To calculate the area of the following diagram, we can calculate separately areas for the trapezoid and the rectangle.
The area of the trapezoid is represented by the following expression:
![A=(1)/(2)(\text{ minor base+mayor base)}\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/zesqovyu4jepl7z1xckovrgk3juvtni73f.png)
The area of the rectangle is represented by the following formula:
![A=b\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/va6lkqlui3yw5vwdwtjup0zaso5zewck4j.png)
Then,
![\begin{gathered} A_(trapezoid)=(1)/(2)(13+24)\cdot4 \\ A_(trapezoid)=(1)/(2)(37)\cdot4 \\ A_(trapezoid)=18.5\cdot4=74in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f142h0r2fu0nuersg3nbk9qgga3je98yun.png)
![\begin{gathered} A_(rec\tan gle)=24\cdot7 \\ A_(rec\tan gle)=168in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mf07c1h3q9b4cn9moj72x4n694r0dg1ky7.png)
So, for the total area:
![\begin{gathered} A_(total)=168\cdot74 \\ A_(total)=12432in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yylnqk8c0sxcz607zmnzqjy1f7gs2n0qzv.png)