37.3k views
4 votes
Looking to recieve help on this practice question, thank you!

Looking to recieve help on this practice question, thank you!-example-1
User SakiM
by
8.5k points

1 Answer

2 votes

In general, the standard form of an ellipse is


\begin{gathered} \frac{(x-h){}^2}{a^2}+((y-k)^2)/(b^2)=1 \\ a,b,h,k\rightarrow\text{ constants} \\ (h,k)\rightarrow\text{ center} \end{gathered}

Thus, in our case, complete the squares for x and y, as shown below


\begin{gathered} 3x^2-12x=3(x^2-4x) \\ and \\ x^2-4x+c^2=(x-c)^2 \end{gathered}

Finding c,


\begin{gathered} \Rightarrow x^2-4x+c^2=x^2-2cx+c^2 \\ \Rightarrow-4x=-2cx \\ \Rightarrow c=2 \\ \Rightarrow3x^2-12x+3*4=3(x^2-4x+4)=3(x-2)^2 \end{gathered}

Therefore, after adding +12 to both sides of the initial equation, we get,


\begin{gathered} 3x^2+5y^2-12x+30y+42+12=12 \\ \Rightarrow3(x-2)^2+5y^2+30y+42=12 \end{gathered}

Similarly, completing the square for the variable y,


\begin{gathered} 5y^2+30y=5(y^2+6y) \\ \Rightarrow y^2+6y+c^2=(y-c)^2 \\ \Rightarrow y^2+6y+c^2=y^2-2cy+c^2 \\ \Rightarrow6=-2c \\ \Rightarrow c=-3 \end{gathered}

Thus,


\begin{gathered} \Rightarrow5y^2+30y+5*(-3)^2=5(y+3)^2 \\ \Rightarrow5y^2+30y+45=5(y+3)^2 \end{gathered}

Therefore, after adding +45 to the initial expression


\begin{gathered} \Rightarrow3(x-2)^2+5y^2+30y+42+45=12+45 \\ \Rightarrow3(x-2)^2+5(y+3)^2+42=57 \end{gathered}

Then,


\begin{gathered} \Rightarrow3(x-2)^2+5(y+3)^2=15 \\ \Rightarrow(3(x-2)^2)/(15)+(5(y+3)^2)/(15)=1 \\ \Rightarrow((x-2)^2)/(5)+((y+3)^2)/(3)=1 \end{gathered}

The answer is the expression immediately above this line.

The center of the ellipse, its minor axis, and major axis are


\begin{gathered} center\rightarrow(h,k)=(2,-3) \\ semi-minor\text{ axis}\rightarrow√(3) \\ semi-major\text{ axis}\rightarrow√(5) \end{gathered}

User Iryna Batvina
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories