To find the solution of the equation we need to remember that the logarithm functions and the exponential functions are inverse of each other that is:
![\log_bb^x=x](https://img.qammunity.org/2023/formulas/mathematics/college/1974755kp76lwehk3ikey92lw5qvonxblw.png)
Then we apply the correct logarithm to both sides of the equation to get:
![\begin{gathered} 3^x=17 \\ \log_33^x=\log_317 \\ x=\log_317 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vr3bcp488od3wbfwvipzmpdvn9dssoe4gi.png)
Now, if we want to write the solution in terms of the natural logarithm, we need to remember that:
![\log_bx=(\ln x)/(\ln b)](https://img.qammunity.org/2023/formulas/mathematics/college/56qw7dsd1bbd3hr8cf51340f59sb01ikpk.png)
Therefore, the solution of the equation can be express in the two following ways:
![\begin{gathered} x=\log_317 \\ \text{ or} \\ x=(\ln17)/(\ln3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s384u7tbb7zv2xsvoe0fjr89wey5k1wnqk.png)