Answer:
(-9,0)
Step-by-step explanation:
The midpoint of a line segment is the point that divides the line into two equal parts.
Given the points C(-13,-9) and D(-5,9), we find the midpoint of CD below:
![\begin{gathered} M(x,y)=((x_1+x_2)/(2),(y_1+y_2)/(2)) \\ $$\mleft(x_1,y_1\mright)=C\mleft(-13,-9\mright)$$ \\ (x_2,y_2)=D\mleft(-5,9\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1dfie6uwpz55n3fmwbokaxwg6aaf4cs7ds.png)
Substitution of the points C and D into the midpoint formula above gives:
![\begin{gathered} M(x,y)=(\frac{-13+(-5)_{}}{2},\frac{-9+9_{}}{2}) \\ =(\frac{-18_{}}{2},\frac{0_{}}{2}) \\ =(-9,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5jac8z87o8f1yf1j9fnlha2cs98dvypsgz.png)
The midpoint of the line segment joining points C and D is (-9,0).