In a quadratic equation like:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/college/gtwfur36jgufas40j4egf3v22iz0dzre6e.png)
To find the vertex use the next formula:
x-coordinate of the vertex:
![h=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/cwwf9bbin9d0ejklymkv2ou3q3tng71xg4.png)
y-coordinate of the vertex evaluate the equation for x=h
![f(h)=ah^2+bh+c](https://img.qammunity.org/2023/formulas/mathematics/college/ddvr61vw8wfqobrasi90gmsyhaijoedlih.png)
To find the zeros or x-intercepts. Equal the function to zero and solve x.
To find the Y-intercept evaluate the equation for x=0
-----------------------------------------------
For the given equations:
![f(x)=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ggqp4tf9ahbsgqhvjmgpjcoq74fanvke01.png)
Vertex:
![\begin{gathered} a=1,b=0 \\ \\ h=-(0)/(2(1))=0 \\ \\ f(0)=0^2=0 \\ \\ \text{Coordiantes of the vertex:} \\ (0,0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9oa7ozpw6syo6l6ra8c7vk6tlj9tcz5x72.png)
y intercept is 0 (coordinates (0,0))
Zeros: in (0,0)
![\begin{gathered} f(x)=0 \\ x^2=0 \\ x=\sqrt[]{0} \\ x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tmrlk5cigxyj0czkt4jfz4v7olryu11j7h.png)
-------------------------------------
![f(x)=x^2+5](https://img.qammunity.org/2023/formulas/mathematics/college/yh3418tukchuqos7g2j4p45a03pstg5btv.png)
Vertex:
![\begin{gathered} a=1,b=0 \\ \\ h=-(0)/(2(1))=0 \\ \\ f(0)=0^2+5=5 \\ \\ \text{Coordinates of the vertex:} \\ (0,5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pj1xmbn97xzpkvdwtq21hbhkauze1ys2h2.png)
y-intercpet is 5 (coordinates (0,5)
Zeros:
![\begin{gathered} f(x)=0 \\ x^2+5=0 \\ x^2=-5 \\ x=\sqrt[]{-5} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wkkvcyjnh95v3n8wngtwm0z93bwfeep95t.png)
As the square root of a negative number is not a real number the function has not zeros (doesn't cross the x-axis)