Given,
The mass of the car moving east, m₁=1470 kg
The velocity of the car moving east, u₁=17.0 m/s
The mass of the car moving south, m₂=1840 kg
The velocity of the car moving south, u₂=15.0 m/s
The two components of the momentum of an object are conserved simultaneously and independently.
Let us assume that the positive x-direction is eastwards and the positive y-direction is northwards.
Thus u₂=-15.0 m/s.
Thus the vertical component of the car moving eastwards and the horizontal component of the car moving southwards are zero.
Considering the horizontal components of the momentum,
![m_1u_1=(m_1+m_2)v_x](https://img.qammunity.org/2023/formulas/physics/college/5hkw3xolwtlsllsohw2mv0t5ytyqz3fu6s.png)
Where vₓ is the x-component of the velocity of the cars right after the collision.
On substituting the known values,
![\begin{gathered} 1470*17.0=(1470+1840)v_x \\ \Rightarrow v_x=(1470*17.0)/((1470+1840)) \\ =7.55\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/d4t6fw791z8xo2nlx4m8g4keua1kwl0gew.png)
Considering the vertical components of the momentum,
![m_2u_2=(m_1+m_2)v_y](https://img.qammunity.org/2023/formulas/physics/college/4qt5ys5jwz3a74elipu16vw7bxmpps9niv.png)
Where v_y is the y-component of the velocity of the cars right after the collision,
![\begin{gathered} 1840*-15.0=(1470+1840)v_y \\ v_y=(-1840*15.0)/((1470+1840)) \\ =-8.34\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4q965qtqxoeak7le4vm4k40a9sdo3k35ut.png)
A.
The magnitude of the velocity of the cars right after the collision is given by,
![v=\sqrt[]{v^2_x+v^2_y}](https://img.qammunity.org/2023/formulas/physics/college/b1061y4obi6re8od41e46k9muims0av3n1.png)
On substituting the known values,
![\begin{gathered} v=\sqrt[]{7.55^2+(-8.34)^2} \\ =11.25\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/uwl97ulnf6uadqul1pagx3g50b1feuwxcc.png)
Thus the magnitude of the velocity of the cars right after the collision is 11.25 m/s
B.
The direction of the cars after the collision is given by,
![\theta=\tan ^(-1)(\frac{v_y_{}}{v_x})](https://img.qammunity.org/2023/formulas/physics/college/gwnvo604e4aygs5quef67zu3qvy6xf7cmz.png)
On substituting the known values,
![\begin{gathered} \theta=\tan ^(-1)((-8.34)/(7.55)) \\ =-47.85^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/tlnv55wduklkhizmp2qyvt09dnt0x2yds1.png)
Thus the direction of the cars after the collision is -47.85°
C.
The total initial kinetic energy of the two cars is,
![K_i=(1)/(2)(m_1u^2_1+m_2u^2_2)](https://img.qammunity.org/2023/formulas/physics/college/b01so3tr8xymu5i2kif0wcuku804boj080.png)
On substituting the known values,
![\begin{gathered} K_i=(1)/(2)(1470*17^2+1840*15^2) \\ =419.42\text{ kJ} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jfifbffxh5imimrm5ydcwvh1wgg0tljcvc.png)
The total kinetic energy of the cars after the collision is
![K_f=(1)/(2)(m_1+m_2)v^2](https://img.qammunity.org/2023/formulas/physics/college/lyr2kj3g1m5d5p8ewnb5fhmi7a9f9gsoog.png)
On substituting the known values,
![\begin{gathered} K_f=(1)/(2)(1470+1840)*11.25^2 \\ =209.46\text{ kJ} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vq7ttgbfmz8sfx7vchkdb17o9bw6lhtxs0.png)
Thus the kinetic energy lost is,
![\begin{gathered} \Delta K=K_i-K_f_{} \\ =419.42-209.46 \\ =209.96\text{ kJ} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ztuac44c8c8r9zetykx6533ywd9pmpw3yn.png)
Thus 209.96 kJ of energy was converted to another form during the collision.