Let, larger number be x and smaller number be y.
Condition 1: The summ of two numbers is 134.
It can be written as,
![x+y=134\ldots\ldots\text{.}(1)](https://img.qammunity.org/2023/formulas/mathematics/college/ruww6iyfh5xjkdyvf2ek34wbecxplgflep.png)
Condition 2: If three times the smaller number is subtracted from the larger number, the result is 18.
The equation is,
![x-3y=18\ldots\ldots\ldots\text{.}\mathrm{}(2)](https://img.qammunity.org/2023/formulas/mathematics/college/af94djawbyftty5hhqibwrf5fqnjh65i7x.png)
Solving equation 1 and 2,
![\begin{gathered} \text{subtract equation (2) from (1),} \\ x+y-(x-3y)=134-18 \\ x+y-x+3y=116 \\ 4y=116 \\ y=29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wiirkqbqvucyu6xnapsam88seh1o483n4r.png)
Out the value of y=29 in equation (1),
![\begin{gathered} x+y=134 \\ x+29=134 \\ x=105 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/54dafsx7x11gkozmxw4gsma2o2h5hjjxo7.png)
Answer:
Larger number is x=105
Smaller number is y=29.